Harder problems

Problem 10. Find all positive integers M such that the sequence a_0, a_1, a_2, \ldots defined by

$$a_0 = M + \frac{1}{2} \quad \text{and} \quad a_{k+1} = a_k \lfloor a_k \rfloor \quad \text{for} \quad k = 0, 1, 2, \ldots$$

contains at least one integer term.

Problem 11. Let n and k be positive integers with $k \geq 2$. Suppose that a_1, \ldots, a_k are pairwise distinct (i.e., all different) elements of the set $\{1, 2, \ldots, n\}$ such that n divides $a_i(a_{i+1} - 1)$ for $i = 1, \ldots, k - 1$. Show that n does not divide $a_k(a_1 - 1)$.

Problem 12. Determine all positive integers n such that $2011^n + 12^n + 2^n$ is a perfect square.

Problem 13. Denote by \mathbb{N} the set of positive integers. Find all functions $f : \mathbb{N} \to \mathbb{N}$ such that $m^2 + f(n)$ divides $mf(m) + n$ for all positive integers m and n.

Problem 14. Determine all positive integers that can be written in the form

$$\frac{\text{lcm}(x, y) + \text{lcm}(y, z)}{\text{lcm}(x, z)}$$

for some positive integers x, y, and z.

Problem 16. Let $p \geq 2$ be a prime number. Alice and Bob play a game. Alice moves first, and then they alternate turns. On each move, the current player chooses an index i in the set $\{0, 1, 2, \ldots, p - 1\}$ that has not been chosen before by either of the two players and then chooses an element a_i.
from the set \(\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} \). The game ends once all the indices have been chosen. At that point, the following number is computed:

\[
N = a_0 + 10a_1 + 10^2a_2 + \cdots + 10^{p-1}a_{p-1} = \sum_{i=0}^{p-1} a_i \cdot 10^i.
\]

The goal of Alice is to make \(N \) divisible by \(p \), and the goal of Bob is to prevent this. Prove that Alice has a winning strategy.

New Problems

Problem 17. Given that a four-digit number \(x = \overline{aabb} \) is a perfect square where \(a \) and \(b \) are distinct nonzero digits, find \(x \).

Problem 18. Given positive integers \(a, b, c \) such that \(a, b \geq c \) prove that there are positive integers \(x, y \) such that \(x \) has \(a \) digits, \(y \) has \(b \) digits, and \(\gcd(x, y) \) has \(c \) digits.

Problem 19. Prove that \(y^2 = x^3 + 7 \) has no integer solutions.

Problem 20. A positive integer is called fancy if it can be expressed in the form

\[
2^{a_1} + 2^{a_2} + \cdots + 2^{a_{100}},
\]

where \(a_1, a_2, \ldots, a_{100} \) are non-negative integers that are not necessarily distinct. Find the smallest positive integer \(n \) such that no multiple of \(n \) is a fancy number.

Problem 21. Does there exist a positive integer \(n \) such that all digits of \(n \) are larger than 5 and all digits of \(n^2 \) are smaller than 5?

Problem 22. Let \(P(x) \) be a nonconstant polynomial with integer coefficients that has no integer roots. Prove that there is a positive integer \(m \leq 3 \cdot \deg P \) such that \(P(m) \) does not divide \(P(m+1) \).

Problem 23. A finite set \(S \) of positive integers has the property that, for each \(s \in S \), and each positive integer divisor \(d \) of \(s \), there exists a unique element \(t \in S \) satisfying \(\gcd(s, t) = d \). (The elements \(s \) and \(t \) could be equal.)

Given this information, find all possible values for the number of elements of \(S \).