More Complex Numbers, at the UTA (MC)²

Luke Robitaille

March 3, 2021

Note: Some of these Problems are leftovers from last week’s handout, while others (specifically, problems 11 through 17) are new this week. That’s why the numbering system is so strange.

Problems:

Problem 3. Define a sequence \(z_0, z_1, z_2, \ldots \) of complex numbers recursively by \(z_0 = \frac{1}{100} + i \) and \(z_{n+1} = \frac{z_n + i}{z_{n-1}} \) for all nonnegative integers \(n \). Let \(a \) and \(b \) be real numbers such that \(z_{1000} = a + bi \). Find \(a + b \).

Problem 6. Find the number of ordered quadruples \((a, b, c, d)\) of complex numbers such that, for all complex numbers \(x \) and \(y \), we have that \((ax + by)^3 + (cx + dy)^3 = x^3 + y^3\).

Problem 8. Let \(P \) be the product of the nonnegative integers \(n \) such that one such value of \(\theta \) is equal to 1. Let \(\omega, \omega^2, \lambda \omega \) form an equilateral triangle in the complex plane. Find the value of \(\lambda \).

Problem 12. For some complex number \(\omega \) with \(|\omega| = 5 \), there is some real \(\lambda > 1 \) such that \(\omega, \omega^2, \omega^3 \), and \(\lambda \omega \) form an equilateral triangle in the complex plane. Find the value of \(\lambda \).

Problem 13. Let \(w \) and \(z \) be complex numbers such that \(|w| = 1 \) and \(|z| = 10 \). Let \(\theta = \arg \left(\frac{w-z}{z} \right) \). Find the maximum possible value of \(\tan^2 \theta \). (Note that \(\arg(w) \), for \(w \neq 0 \), denotes the measure of the angle that the ray from 0 to \(w \) makes with the positive real axis in the complex plane.)

Problem 14. Given \(f(z) = z^2 - 19z \), there are complex numbers \(z \) with the property that \(z, f(z), \) and \(f(f(z)) \) are the vertices of a right triangle in the complex plane with a right angle at \(f(z) \). There are positive integers \(m \) and \(n \) such that one such value of \(z \) is \(m + \sqrt{n} + 11i \). Find \(m + n \).

Problem 15. Let \(z_1 = 18 + 83i \), \(z_2 = 18 + 39i \), and \(z_3 = 78 + 99i \), where \(i = \sqrt{-1} \). Let \(z \) be the unique complex number with the properties that \(\frac{z-z_1}{z_2-z_1} \cdot \frac{z-z_2}{z_3-z_2} \) is a real number and the imaginary part of \(z \) is the greatest possible. Find the real part of \(z \).

Harder Problems:

Problem 9. Find all nonconstant polynomials \(P(z) \) with complex coefficients for which all complex roots of the polynomials \(P(z) \) and \(P(z) - 1 \) have absolute value 1.

Problem 10. Let \(w, x, y, \) and \(z \) be complex numbers with \(|w| = |x| = |y| = |z| = 1 \) and \(wxyz + 3 = w + x + y + z \). Prove that at least one of \(w, x, y, \) and \(z \) is equal to 1.

Problem 16. Let \(ABC \) be an acute triangle with orthocenter \(H \) and circumcircle \(\Gamma \). Let \(BH \) intersect \(AC \) at \(E \), and let \(CH \) intersect \(AB \) at \(F \). Let \(AH \) intersect \(\Gamma \) again at \(P \neq A \). Let \(PE \) intersect \(\Gamma \) again at \(Q \neq P \). Prove that \(BQ \) bisects segment \(EF \).

Problem 17. Let \(ABC \) be a triangle with \(AB = AC \neq BC \) and let \(I \) be its incenter. The line \(BI \) meets \(AC \) at \(D \), and the line through \(D \) perpendicular to \(AC \) meets \(AI \) at \(E \). Prove that the reflection of \(I \) in \(AC \) lies on the circumcircle of triangle \(BDE \).