UT Arlington Mid-Cities Math Circle $(MC)^2$ Polynomials

Problem 1. Find a polynomial with integer coefficients whose zeros include $\sqrt{2} + \sqrt{5}$.

Problem 2. Let p(x) be a polynomial with integer coefficients. Assume that p(a) = p(b) = p(c) = -1, where a, b, c are three different integers. Prove that p(x) has no integer zeros.

Problem 3. Let $P(x) = x^n + a_{n-1}x^{n-1} + ... + a_1x + a_0$ be a polynomial with integer coefficients. Suppose that there exist four distinct integers a, b, c, d with P(a) = P(b) = P(c) = P(d) = 5. Prove that there is no integer k with P(k) = 8.

Problem 4. (USAMO 1975) If P(x) denotes a polynomial of degree n such that P(k) = k/(k+1) for k = 0, 1, 2, ..., n, determine P(n+1).

Problem 5. Find the remainder when you divide $x^{81} + x^{49} + x^{25} + x^9 + x$ by $x^3 - x$.

Problem 6. Find all polynomials f(x) for which xf(x-1) = (x+1)f(x).

Problem 7. Determine all polynomials P(x) such that P(0) = 0 and $P(x^2 + 1) = P(x)^2 + 1$.